Confusion Matrix

  • Sensitivity / true positive rate (TPR) / hit rate / recall
    • $$\frac{TP}{P} = \frac{TP}{TP + FN}$$
  • Specificity (SPC) / true negative rate (TNR)
    • $$\frac{TN}{N} = \frac{TN}{TN + FP}$$
  • Precision / positive predictive value (PPV)
    • $$\frac{TP}{TP + FP}$$
  • Negative predictive value (NPV)
    • $$\frac{TN}{TN + FN}$$
  • Fall-out / false positive rate (FPR)
    • $$\frac{FP}{N} = \frac{FP}{FP + TN} = 1 - SPC$$
  • False negative rate (FNR)
    • $$\frac{FN}{TP+FN} = 1 - TPR$$
  • False discovery rate (FDR)
    • $$\frac{FP}{TP+FP} = 1-PPV$$

Precision/Recall

  • Precision
    • When it says true, the ratio that it is correct
  • Recall
    • The ratio the truths are detected
  • F1
    • Harmonic mean of precision & recall
    • $$F_1 = 2 \frac{\text{precision} \text{recall}}{\text{precision} + \text{recall}}$$
Tradeoff

Increasing precision reduces recall, and vice versa.

Receiver Operating Characteristic (ROC)

  • True positive rate
    • = recall = hit rate = sensitivity = prob. of detection
  • False positive rate
    • = fall-out = prob. of false alarm = 1 - specificity (true negative rate)
  • Area under ROC curve (AUC)
    • 1 for perfect classifier
    • 0.5 for random
Tradeoff

Increasing TPR also increases FPR.

Comparison

  • PR
    • If positive class rare
    • Care more about false positives than false negatives
  • ROC
    • Otherwise

Multiclass Classification

  • One-vs-All (OvA)
    • Train K linear classifiers, one for each class
    • The one with highest score wins
  • One-vs-One (OvO)

results matching ""

    No results matching ""