Confusion Matrix
- Sensitivity / true positive rate (TPR) / hit rate / recall
- $$\frac{TP}{P} = \frac{TP}{TP + FN}$$
- Specificity (SPC) / true negative rate (TNR)
- $$\frac{TN}{N} = \frac{TN}{TN + FP}$$
- Precision / positive predictive value (PPV)
- $$\frac{TP}{TP + FP}$$
- Negative predictive value (NPV)
- $$\frac{TN}{TN + FN}$$
- Fall-out / false positive rate (FPR)
- $$\frac{FP}{N} = \frac{FP}{FP + TN} = 1 - SPC$$
- False negative rate (FNR)
- $$\frac{FN}{TP+FN} = 1 - TPR$$
- False discovery rate (FDR)
- $$\frac{FP}{TP+FP} = 1-PPV$$
Precision/Recall
- Precision
- When it says true, the ratio that it is correct
- Recall
- The ratio the truths are detected
- F1
- Harmonic mean of precision & recall
- $$F_1 = 2 \frac{\text{precision} \text{recall}}{\text{precision} + \text{recall}}$$
Tradeoff
Increasing precision reduces recall, and vice versa.
Receiver Operating Characteristic (ROC)
- True positive rate
- = recall = hit rate = sensitivity = prob. of detection
- False positive rate
- = fall-out = prob. of false alarm = 1 - specificity (true negative rate)
- Area under ROC curve (AUC)
- 1 for perfect classifier
- 0.5 for random
Tradeoff
Increasing TPR also increases FPR.
Comparison
- PR
- If positive class rare
- Care more about false positives than false negatives
- ROC
- Otherwise
Multiclass Classification
- One-vs-All (OvA)
- Train K linear classifiers, one for each class
- The one with highest score wins
- One-vs-One (OvO)
- Train $$\frac{K(K-1)}{2}$$ classifiers, one for each pair of classes, trained with relevant samples only
- SVM default, due to space constraints