ANN
A neural network learns through adjusting the weights.
- Decide how many neurons & how to connect them
- Decide learning algorithm
- Train - initialize the weights, update the weights
Activation Function
How the neuron determine an output.
- Hard limit functions (used in decision-making neuron for classification & pattern recognition)
- Step function
- Sign function
Perceptron
Simplest form of NN with adjustable synaptic weights & hard limiter.Learn the linearly-separable function $$\sum^n_{i=1} x_i w_i - \theta = 0$$.
- Initialize weights & threshold
Activation
$$Y(p) = step(\sum^n_{i=1} x_i(p) w_i(p) - \theta)$$Weight training
$$\begin{aligned} w_i(p+1) &= w_i(p) + \Delta w_i(p)\ \Delta w_i(p) &= \alpha \cdot x_i(p) \cdot e_i(p)\ e_i(p) &= Y_d(p) - Y(p) \end{aligned}$$
$$\begin{aligned} \theta_i(p+1) &= \theta_i(p) + \Delta \theta_i(p)\ \Delta \theta_i(p) &= \alpha \cdot (-1) \cdot e_i(p) \end{aligned}$$Iteration
Application
- Prediction
- Classification
- Clustering
Input Data
- Continuous
- $$scaledValue = \frac{value - min}{max - min}$$
- Discrete
- Map inputs of discrete values to values in
[0, 1]
- Map inputs of discrete values to values in
- Categorical
- 1-of-N encoding