Overview
- Recurrent-NN
- Feedback from outputs to inputs
- Hopfield NN
- No self-feedback
- Can store a set of fundamental memories if the weight matrix is symmetrical & zeros in its main diagonal
Algorithm
- $$Y$$: fundamental memories
- $$W$$: weights
- $$M$$: number of fundamental memories
- $$n$$: number of neurons
- Storage of fundamental memories
- $$W = \sum_{i=1}^M Y_iY_i^T - MI$$
- Testing the recall of fundamental memories
- $$X_i = Y_i$$
- $$Y_i = sign(WX_i)$$
- Retrieval of incomplete/corrupted version of a fundamental memory
- $$Y(0) = sign(WX)$$
- $$Y(t+1) = sign(WY(t))$$ (neurons for updating selected asynchronously)
Behavior
- Always converge to a stable state
- Not necessarily retrieve one of the fundamental memories
Storage Capacity
- Experimental result: $$M_{max} = 0.15n$$ (small)
- All fundamental memories can be retrieved perfectly: $$M_{max} = \frac{n}{4\ln{n}}$$
- Auto-associative memory