Overview

  • Recurrent-NN
    • Feedback from outputs to inputs
  • Hopfield NN
    • No self-feedback
    • Can store a set of fundamental memories if the weight matrix is symmetrical & zeros in its main diagonal

Algorithm

  • $$Y$$: fundamental memories
  • $$W$$: weights
  • $$M$$: number of fundamental memories
  • $$n$$: number of neurons

  1. Storage of fundamental memories
    1. $$W = \sum_{i=1}^M Y_iY_i^T - MI$$
  2. Testing the recall of fundamental memories
    1. $$X_i = Y_i$$
    2. $$Y_i = sign(WX_i)$$
  3. Retrieval of incomplete/corrupted version of a fundamental memory
    1. $$Y(0) = sign(WX)$$
    2. $$Y(t+1) = sign(WY(t))$$ (neurons for updating selected asynchronously)

Behavior

  1. Always converge to a stable state
  2. Not necessarily retrieve one of the fundamental memories

Storage Capacity

  1. Experimental result: $$M_{max} = 0.15n$$ (small)
  2. All fundamental memories can be retrieved perfectly: $$M_{max} = \frac{n}{4\ln{n}}$$
  3. Auto-associative memory

results matching ""

    No results matching ""